

DECLARATION OF PERFORMANCE

DoP 0270

for fischer aircrete anchor FPX-I (Metal expansion fastener for use in autoclaved aerated concrete)

ΕN

1. Unique identification code of the product-type:

2. Intended use/es: Post-installed fastening for use in cracked or uncracked reinforced slabs or masonry units made of

autoclaved aerated concrete, see appendix, especially annexes B1 - B5.

fischerwerke GmbH & Co. KG, Klaus-Fischer-Str. 1, 72178 Waldachtal, Germany 3. Manufacturer:

DoP 0270

4. Authorised representative:

5. System/s of AVCP: 1

EAD 330014-00-0601 6. European Assessment Document: European Technical Assessment: ETA-12/0456; 2019-07-19

DIBt- Deutsches Institut für Bautechnik Technical Assessment Body:

Notified body/ies: 2873 TU Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Resistance in any load direction without lever arm: Annex C1 Resistance under shear load with lever arm: Annex C1 Spacing, edge distance, member thickness: Annexes B3, B4, C1

Displacements: Annex C2 Durability: Annex B1

Safety in case of fire (BWR 2)

Reaction to fire: Class A1

Fire resistance in any load direction without level arm: Annex C2

Fire resistance under shear load with level arm: NPD Spacing, edge distance for fire resistance: Annex C2

8. Appropriate Technical Documentation and/or

Specific Technical Documentation:

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Dr.-Ing. Oliver Geibig, Managing Director Business Units & Engineering

Tumlingen, 2021-01-15

Jürgen Grün, Managing Director Chemistry & Quality

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Fischer DATA DOP_ECs_V39.xlsm 1/ 1

Specific Part

1 Technical description of the product

The fischer aircrete anchor FPX-I is a deformation controlled expansion anchor made of galvanised steel. The anchor consists of an internal threaded socket, a cone bolt and an expansion sleeve. The anchor transfers loads into autoclaved aerated concrete via mechanical interlock

The anchor is set into a predrilled bore hole and anchored with a hexagon installation tool until the installation tool is pushed out of the internal hexagon socket. The fixture is installed with a screw-in part (threaded rods or screw).

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

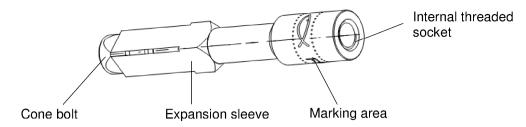
The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

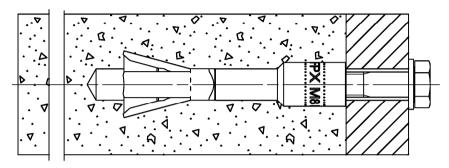
3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Resistance in any load direction without lever arm	See Annex C 1
Resistance in any load direction with lever arm	See Annex C 1
Spacing, edge distance, member thickness	See Annex B 3 and B 4
Displacements	See Annex C 2
Durability	Durability is ensured if the specifications of intended use according to Annex B are taken into account.

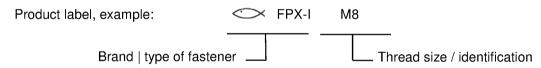
3.2 Safety in case of fire (BWR 2)


	Essential characteristic	Performance		
Reaction to fire		Class A1		
	Resistance to fire	See Annex C 2		

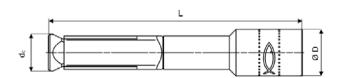
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base


In accordance with European Assessment Document EAD No. 330014-00-0601, the applicable European legal act is: [96/582/EC].

The system(s) to be applied is (are): 1


Product description

Product installed


Product label

Product dimensions

Table A1.1: Dimension [mm]

Anchor type				F	PX-I	
Internal thread	read M6 M8 M10				M10	M12
Anchor length	L	=	75			
Diameter head internal threaded socket	ØD	=	14 16			
Diameter cone bolt	Ø d _c	=	11			

fischer aircrete anchor FPX-I

Product description

Description, label and dimension

Annex A 1

Appendix 3 / 10

Specifications of intended use						
fischer aircrete anchor FPX-I	M6	M8	M10	M12		
Galvanized steel						
Static and quasi-static loads						
Cracked and uncracked Autoclaved Aerated Concrete (AAC)						
Fire exposure in reinforced slabs according to EN 12602:2016 of						
strength class $f_{AAC} \ge 3.3 \text{ N/mm}^2$ with dry density $\rho_m \ge 0.50 \text{ kg/dm}^3$ and strength class $f_{AAC} \ge 4.4 \text{ N/mm}^2$ with dry density $\rho_m \ge 0.55 \text{ kg/dm}^3$						

Base material:

- Cracked reinforced slabs (uncracked slabs are included) according to EN 12602:2016 of strength class f_{AAC} ≥ 3,3 N/mm² with dry density ρ_m ≥ 0,50 kg/dm³ and strength class f_{AAC} ≥ 4,4 N/mm² with dry density ρ_m ≥ 0,55 kg/dm³
- Uncracked reinforced slabs according to EN 12602:2016 of strength class $f_{AAC} \ge 1,6 \text{ N/mm}^2$ with dry density $\rho_m \ge 0,25 \text{ kg/dm}^3$ and strength class $f_{AAC} \ge 6,0 \text{ N/mm}^2$ with dry density $\rho_m \ge 0,65 \text{ kg/dm}^3$
- Masonry units according to EN 771-4:2011+A1:2015 of strength class $f_{AAC} \ge 1,6$ N/mm² with dry density $\rho_m \ge 0,25$ kg/dm³ and strength class $f_{AAC} \ge 6,0$ N/mm² with dry density $\rho_m \ge 0,65$ kg/dm³
- The mortar strength class of the masonry has to be M 2,5 according to EN 998-2:2017 at minimum

Use conditions (Environmental conditions):

Structures subject to dry internal conditions (FPX-I)

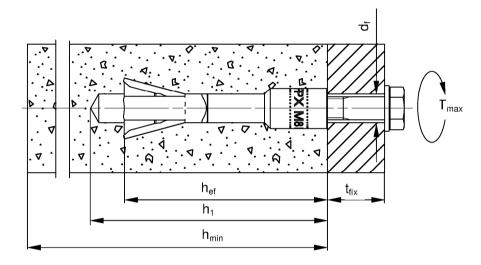
Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete and masonry work
- Verifiable calculation notes and drawings are to be prepared taking account in the loads to be anchored. The position of the anchor is to be indicated on the design drawings
- · Design of fastenings according to TR 054, Design Method B.

Table B1.1: Material

Designation	FPX-I
Cone bolt 1)	Steel EN 10263:2018
Expansion sleeve 1)	Steel EN 10277:2018
Internal threaded bolt 1)	Steel EN 10277:2018
Screw-in-parts ^{1, 2)}	Minimum steel strength class 4.8, DIN EN ISO 898-1:2013

¹⁾ Galvanized according to EN ISO 4042:2018, \geq 5 μ m


fischer aircrete anchor FPX-I	
Intended use	Annex B 1
Specifications	Appendix 4 / 10

²⁾ Screw-in parts (screws and threaded rods including nuts and washer) must comply with the specification in Annex C1.

Table B2.1	: Installation	parameters
------------	----------------	------------

C:								
Size					М6	М8	M10	M12
Nominal drill hole diameter		d_0	=			10		
Maximum drill bit diameter		d_{cut}	≤		10,45			
Depth of drill hole to deepest point	with cleaning 1)	_ h		[mm]	80			
Depth of anii hole to deepest point	without cleaning	- n ₁	≥	[mm]	nj 95)5	
Diameter of clearance hole in the fixture)	d_{f}	≤		7 9 12 14			14
Effective embedment depth		h _{ef}	=			70		
Maximum fastening torque 2)		T _{max}		[Nm]	3			
Screw-in depth internal thread		$I_{s,min}$	[6	8	10	12
Screw-in depth internal thread		I _{s,max}		[mm]		1	5	

¹⁾ For member thickness h < 120 mm the drill hole shall be cleaned and the depth of the drill hole shall be reduced to 80 mm in order to avoid damage on the opposite side of the wall $^{2)}$ If the anchor cannot retain against the fixture no installation torque may be applied ($T_{max} = 0 \text{ Nm}$)

= Effective embedment depth h_{ef}

= Thickness of fixture

= Depth of drill hole to deepest point h_{min} = Minimum thickness of AAC member

 T_{max} = Maximum setting torque

= Diameter of clearance hole in the fixture

fischer	aircrete	anchor	FPX-I
11361161	ancicie	anchion	11 /

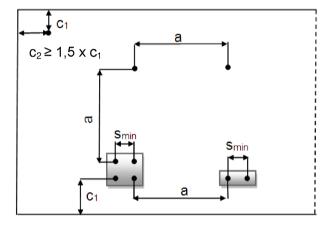
Intended use

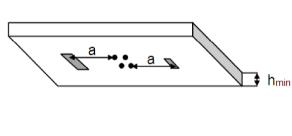
Installation parameters

Annex B 2

Appendix 5 / 10

Table B3.1: Minimum member thickness, minimum spacing and edge distance in AAC - slabs


Size				FP	X-I	_		
Size				М6	М8	M10	M12	
Minimum thickness of AAC - slab	with cleaning 1)	_ h		100				
Willimum trickness of AAC - slab	without cleaning	– h _{min}		120				
Minimum spacing	Minimum spacing			100				
Minimum adda diatanaa	single anchor 2)		[mm]	125 ⁵⁾				
Minimum edge distance	anchor groups 3)	— с ₁		250				
Minimum edge distance, orthogonal to c ₁		c_2		1,5 x c ₁				
Minimum spacing between	single anchors				60	00		
willimidin spacing between	anchors groups 3) 4)	– a		750				


¹⁾ For member thickness h < 120 mm the drill dust has to be cleaned out of the hole and the depth of the drill hole has to be reduced to 80 mm in order to avoid damage on the opposite side of the slab

single anchors

4) If there is no (free) edge, or the edge distance is ≥ a, the spacing between anchor groups can be reduced to the spacing between single anchors

The edge distance of reinforced slabs with a width \leq 700 mm has to be \geq 150 mm

fie	cher	airc	roto	anc	hor	FP'	Y _	I
	CHEL	ant	1616	<i>a</i> 11.	ıwı	1 6	Λ-	

Intended use

Minimum member thickness, minimum spacing and edge distance in AAC slabs

Annex B 3

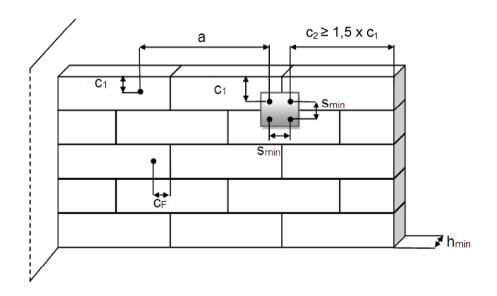
Appendix 6 / 10

²⁾ Maximum 2 single anchors in the same formation as anchor groups. For 2 single anchors with spacing smaller than 600 mm $(s_{min} \ge 100 \text{ mm})$ the same spacing in between and edge distances (a; c_1) like for the anchor group are valid ³⁾ For exclusive tension loads the spacing and edge distances for groups can be reduced to the spacing and edge distances of

Table B4.1: Minimum member thickness, minimum spacing and edge distance in AAC - **masonry**

Sino				FP	X-I		
Size		M6 M8 M10 M12					
Minimum thickness of AAC -	with cleaning 1)	h		100			
masonry	without cleaning	– h _{min}		120			
Minimum spacing	S _{min} 1			100			
Minimum distance to non-filled joints, single anchor			[mm]	0 ⁵⁾ / 75 ⁶⁾ / 125 ⁷⁾			
Minimum edge distance	single anchor ²⁾	single anchor 2)		125			
Willing edge distance	anchor groups 3)	— C ₁		250			
Minimum edge distance, orthogonal to c₁		c_2		1,5 x c ₁			
Minimum spacing between	single anchors 2)				37	75	
I willimum spacing between	anchors groups 3) 4)	- a		750			

¹⁾ For member thickness h < 120 mm, the drill hole shall be cleaned and the depth of the drill hole shall be reduced to 80 mm in order to avoid damage on the opposite side of the wall


³⁾ For exclusive tension loads the spacing and edge distances of anchor groups can be reduced to the spacing and edge distances of single anchors

⁴⁾ If there is no edge, or the edge distance is ≥ a, the spacing between anchor groups can be reduced to the spacing between single anchors

⁵⁾ For joints completely filled with mortar and a joint width ≤ 12 mm and a compressive strength according to EN 998-2 ≥ f_{AAC} AAC no distances to joints are required

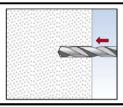
6) c_F for only tension and /or shear loads parallel to the joints which are not filled with mortar and a joint width ≤ 2 mm

 $^{7)}$ c_F = c₁ for shear load or with a part of the load orthogonal to the joint which are not filled with mortar and a joint width \geq 0 mm

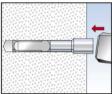
tioobor	aircrete	OBOBOK	LDVI
1150:1161	anciele	ancanor	

Intended use

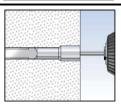
Minimum member thickness, minimum spacing and edge distance in AAC masonry


Annex B 4

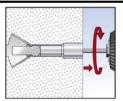
Appendix 7 / 10

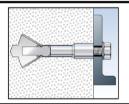

²⁾ Maximum 2 single anchors in the same formation as the anchor groups. For 2 single anchors with spacing smaller than 375 mm (s_{min} ≥ 100 mm) the same spacing in between and edge distances (a; c₁) like for the anchor group are valid

Installation instruction

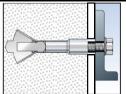

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor
- Checking before placing the anchor to ensure that the strength class of the aircrete in which the anchor is to be placed is in the range given and is not lower than that of the aircrete to which the characteristic loads apply
- Drill hole created perpendicular +/- 5° to AAC surface, positioning without damaging the reinforcement
- In case of aborted hole: New drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with non-shrinkage, high strength mortar (pressure strength ≥ 30 N/mm²) and if under shear or oblique tension load it is not the direction of the load application

1: Drill the hole. Other methods like punching, to make the hole, are allowed. When the AAC is covered with a hard layer like tiles, the tile has to be drilled with minimum diameter of the head of the internal threaded bolt ø D


2: Set the fastener until it is flush with the surface of the AAC


3: Turning the internal thread bolt with the hexagon (approximately 15 turnings are required)

Setting tool for FPX-I M6


Setting tool for FPX-I M8 - M12

4: By turning the internal thread bolt, the cone is driven into the expansion sleeve. When the optimal expansion is reached, the hexagon is thrown out of the socket. The turning of the internal thread bolt until the hexagon is thrown out of the socket is compulsory if tightening is impossible the anchor cannot be loaded

5a: Optional tightening the fastener with a torque $T_{max} \le 3$ Nm. The anchor could be pulled against the fixture depending on the compressive strength of the AAC.

5b: If the anchor cannot support against the fixture (with cover layer) no installation torque may be applied $(T_{max} = 0)$

fischer aircrete anchor FPX-I

Intended use Installation instructions Annex B 5

Appendix 8 / 10

					FPX-I			
Size				М6	M8	M10	M12	
Single anchor in AAC - slabs 1)								
Characteristic resistance in cracked AAC -		$f_{AAC} \geq 3, 3, \; \rho_m$	≥ 0,50	1,5				
slabs	_{Rk} [kN] —	$f_{AAC} \ge 4,4, \ \rho_m$	2,0					
Characteristic resistance in uncracked AAC -		$f_{AAC} \ge 3,3, \ \rho_m \ge 0,50$ 2,0						
slabs		$f_{AAC} \ge 4,4, \ \rho_m$	3,0					
Partial safety factor for AAC - slabs		•	MAAC 2)		1,	73		
Single anchor in AAC - masonry 1)								
Observation in the manifest area in AAO (1997)		$f_{AAC} \ge 1.6, \rho_{m} \ge 0.25$		0,9				
Characteristic resistance in AAC - masonry 3)	_{Rk} [kN] —	$f_{AAC} \ge 2.0, \rho_{m} \ge 0.35$						
Intermediate values by linear interpolation	Rk [KIN]	$f_{AAC} \ge 4.0, \ \rho_{m} \ge 0.50$		2,5				
		$f_{AAC} \ge 6.0, \rho_{m} \ge 0.65$		4,0				
Partial safety factor for AAC - masonry		2	/MAAC 2)		2	,0		
Single anchor in AAC - slabs and AAC - mason	ry ¹⁾							
Characteristic handing registance with		<u>-</u>	4.8	6	15	30	52	
Characteristic bending resistance with lever arm in combination with screw / ISO threaded rod complying with:	-1: 2013	M _{Rk,s} [Nm] -	5.8	8	19	37	65	
			6.8	9	23	44	78	
			8.8	12	30	60	105	
Partial safety factor for steel failure			γMs			25		
Anchor groups in cracked and uncracked AAC	- slabs a	nd AAC - mas	sonry w	with $n = 2$	2 to n = 4	anchor	s ³⁾	
Characteristic resistance for $n = 2$, $n = 4^{4}$ $s_{min} \ge 100$ mm, $c_1 \ge 250$ mm s_{min}^{5}		$F_{Rk,r}$			2 x	F_Rk		
Characteristic resistance for $n \ge 3$ $s_{min} \ge 140$ mm, $c_{min, anchor group} \ge 700$ mm $^{5)}$		¹ Rk,r	[kN]		n x	F_Rk		
Characteristic resistance redundancy when the joints are not visible 5)		F _{Rk,n,Redundancy}			0,5 x	$F_{Rk,n}$		
Partial safety factor for AAC - slabs		γ	MAAC 2)			73		
Partial safety factor for AAC - masonry			MAAC 2)		2	,0		

⁽s_{min} ≥ 100 mm) the characteristic resistance of the anchor group is decisive

The characteristic strength class f_{AAC} [N/mm²] and the characteristic dry density ρ_m [kg/dm³] have to comply with EN 771-4:2011+A1:2015 for AAC - masonry and EN 12602:2016 for AAC - slabs

fischer aircrete anchor FPX-I	
Performances	Annex C 1
Characteristic resistance for all load directions	Appendix 9 / 10

The installation safety factor $\gamma_2 = 1,0$ is included 3) The evaluation of $N_{Rk,pb}$ according to TR 054, Section 4.2.1.5 is necessary. The smaller value of $N_{Rk,pb}$ and F_{Rk} is decisive 4) Rectangular arrangement according to Graning Annex B3 and B4

⁵⁾ Only for multiple use according to EAD 330747-00-0601

Table C2.1: Characteristic resistance for each anchor under fire exposure for all load directions

Size			FPX-I				
Size				М6	М8	M10	M12
Characteristic resistance for cracked slabs of strength class $f_{AAC} \ge 3,3$, $\rho_m \ge 0,50$		R30		0,4			
	$F_{Rk,fi}$	R60	- [kN] -	0,4			
		R90		0	,3	0	,4
		R120		0,3			
Characteristic resistance for cracked slabs of strength class $f_{AAC} \ge 4,4$, $\rho_m \ge 0,55$		R30		0,5			
	$F_{Rk,fi}$	R60	[kN])	0,4		,5	
		R90		0,3		0,5	
		R120		0	,3	0,4	
Minimum spacing	Smin,fi		[mm]	100			
Minimum edge distance	Cmin,fi		[mm]	$c_{min,fi} = 140$ for fire exposure from more than one side $c_{min,fi} \ge 300$ mm			an

It must be ensured that local spalling of the autoclaved aerated concrete cover does not occur.

Table C2.2: Displacement under tension loads, shear loads and oblique loads in AAC 1)

Size	FPX-I M6 M8 M10 M12			
Displacement tension load in cracked AAC for all AAC strength classes	<u>δνο</u> δν∞	1,0		
Displacement tension load in uncracked AAC for all AAC strength classes	<u>δνο</u> δ _{ν∞}	1,0 1,0		
Displacement shear load in cracked and uncracked AAC $f_{AAC} = 1,6 - \rho_m \ge 0,25^{-2}$	$\frac{\delta_{V0}}{\delta_{V\infty}}$ [mm]	2,5 3,7		
Displacement shear load in cracked and uncracked AAC $f_{AAC} \ge 6.0 - \rho_m \ge 0.65^{2}$	<u>δνο</u> δν∞	5,0 7,3		

fischer aircrete anchor FPX-I	
Performances Characteristic resistance of a fixing point under fire exposure for all load directions Displacements under tension, shear loads and oblique loads	

 $^{^{1)}}$ Displacement at service load level F_{Rk}/ (γ_{MAAC} x 1,4) $^{2)}$ Intermediate values by linear interpolation, taking in account the AAC strength